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1. Introduction. In a recent paper [1] we have considered 
two limit theorems on set-functions in an abstract set. The first 
theorem is a generalization of the theorem on differentiation on a 
net, the net being replaced by an increasing sequence of a-fields. 
The second theorem is a sort of counterpart of the first, the 
sequence of tf-fields being now decreasing. The theorems had 
presented themselves as generalizations of known theorems on 
integration of functions of infinitely many variables.

When publishing our paper we were not aware that essen
tially equivalent results had already been published by Doob 
[2], though in a form in which the close connection with the 
known results on functions of infinitely many variables is less 
apparent. There is, however, the difference, that while Doob 
considers point-functions, which amounts to assume the set-func
tions continuous with respect to the given measures, we have, 
in the first theorem, made this assumption only for the contrac
tions to the tf-fields of the sequence, whereas the set-function 
itself was allowed to contain a singular part.

The object of the present paper is to prove generalizations 
of the two theorems, in which no assumptions regarding conti
nuity of the set-functions with respect to the measures are made. 
Thus we obtain two theorems which are completely analogous. 
For this purpose only slight changes in the former proofs are 
required, but for the convenience of the reader we give the proofs 
in detail. Actually the generalization makes the proofs more con
spicuous.

2. Derivative of a set-function with respect to a measure. 
In addition to the definitions and theorems stated at the begin
ning of [1] we shall use the following fundamental theorem:

Let E be a set containing at least one element, and p, a mea-
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sure in E with domain J, such that and /¿(E) = 1. Then 
to any bounded, completely additive set-function y with domain 

there exists a /¿-integrable function f with [f] = E such that 
the /¿-continuous part gpc of <p is the indefinite integral of f, i. e.

$PC(A) =
Ja

for any Ae$, and that the positive and negative parts of the 
/¿-singular part </>s of y for any Ae$ are determined by

gps+(A) = y (A [/= + oo]) and (A) = y (A [/*  = — oo]).

Any such function / will be called a derivative of g> with re
spect to p.

It is easily seen that if /'() is a derivative of y with respect to 
/¿ then a /¿-measurable function f is a derivative of y with re
spect to /¿ if and only if /¿ ([/ * /J) = 0 and <p (A) = 0 for any 
sub-set Ae$ of \f 4= f0].

A p-measurable function f is a derivative of g> with respect to p 
if and only if it satisfies the following conditions: For an arbitrary 
(finite) number a we have (A) < ap(A) for any sub-set Ae^ of 
[f < a] and tp (A) > ap(A) for any sub-set Ae$ of [f > a].

The necessity of the first condition is plain, for since 
A [f = -T o°] = 0 we have

(p (A) = C f (x) p (dE) + (p (A [f = — oo]) < ( a/¿ (dE) + 0 = ap (A). 
•’a Ja

The necessity of the second condition is proved analogously.
The sufficiency of the conditions is well known from the 

proof of the above mentioned theorem.

3. The two limit theorems. Let E be a set containing at least 
one element, and p a measure in E with domain [y, such that 
Ee% and p (E) = 1. Let y be a bounded, completely additive 
set-function with domain Çy.

Let A2, ' ‘ ’ he a sequence of tf-fields contained in £y, such 
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that for all n. Let pn and yn denote the contractions of 
p and (f> to $n, and let fn denote a derivative of tpn with respect 
to pR.

The first limit theorem now slates:

If C £ • • • (hen the functions

are derivatives of tp' with respect to p', where p and y' are the con
tractions of p and (f) to the smallest a-field containing all $n.

In the particular case in which yn for every n is ^-conti
nuous, this theorem is equivalent to the first limit theorem of our 
previous paper [1].

The second limit theorem states:

If 2 2 • • • then the functions

•/=liminf/n and /=limsup/n
n n

are derivatives of tp' with respect to p', where p and y are the con
tractions of p and tp io the largest a-field contained in all

In the particular case in which tp is ¿¿-continuous, and hence 
(pn for every n is ¿/^-continuous, this theorem is equivalent to the 
second limit theorem of [1].

4. Proof of the first limit theorem. Since / and / evidently 
are ¿¿'-measurable it will according to § 2 be sufficient to prove 
the inequalities

<p (HA) < ap (HA) and <p (KA) > ap (KA)

for any âe^', when H = [f < a] and K = [f > a] for an arbi
trary number a.1

1 For if A is a sub-set off/1 a] or [f < a] we have HA = A, and if A 
is a sub-set of [f > a] or If > a] we have KA = A.

In order to prove the first inequality we put
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Hn = [inf fn + p< an]
p

and
H  i [/n + 1 < «ni for P = 1

ll/’n+l •••’ /n + p-1 «n’/n + p<CrJ for P > l’

where alt a2, ••• denotes a (strictly) decreasing sequence of 
numbers converging towards a. Then Hnp*i!s n + p and Hnp£

Clearly (for a given n) no two of the sets Hnp have 
elements in common, and Hn = 2 H . Further H{ 2 H2 2 • • • 

and H = T Hn. Now, if A belongs to the field ® we
n n

shall have Ae$n for all n > (some) n0 ; hence HnpA£^n + p for 
n > n0 and all P- We therefore have

<p(HnA) = 29(H„pA) = S<p„ + p(H„pA)
P p

- Vn + p^np^ = ~anP(H A) = V(^nA).
P P

Since HtA 2 H2A 2 • • • and HA = î)HnA, we have ft(HA) = 
n

lim p(Hn A) and y (HA) = lim y (HnA). We therefore obtain 

(f> (HA) < a /i (HA).
We now define a set-function x on by placing

x(A) = a fi (HA)- y (HA).

Clearly x is bounded and completely additive. Moreover, since 
y (HA) < a ¡u (HA) for As®, the contraction of x to & is non
negative. Since is the smallest a-field containing & this im
plies that the set-function x itself is non-negative, i. e. the 
inequality y (HA) < ap(HA) is valid for all Ae$'.

The inequality y(ÆA) > a [¿(KA) is proved analogously.

'). Corollaries of the first limit theorem. If in particular
= fjr, we have /<' = /¿and y' = y, so that the first limit theo

rem contains statements about the set-function y itself.
Even if ft'eft, we may, however, by means of the following 

general remark concerning derivatives, under a certain additional 
assumption, deduce results regarding the set-function y.

Let E, [L, and y be as in § 2, and let and y' denote 
the contractions of /< and y to a a-field ft'cft, such that He ft'.
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Let /’' denote a derivative of tp' with respect to p,'. Suppose, that 
to any set A e $ there exist sets B e and C such that B Q A Q C 
and fi (C — B) = 0. Then

(i) if <p is non-negative f is also a derivative of y with respect 
to fl-,

(ii) in any case the indefinite integral of f with respect to p is 
the p-continuous part of gp.

Proof, (i) Let A e^, and let B and C he corresponding sets ac
cording to the assumption. On placing H = [f' < a] and K = 
[f > a] we have

y (HA) < <p(HC) < ap(HC) = ap(HA) 
and

y (KA) > y (KB) > a g (KB) = ap (KA).

(ii) The statement follows easily by application of (i) to the 
set-functions g>+ and — <p~.

Our assumption does not imply that f' for an arbitrary </- is 
a derivative of gp with respect to p. This is shown by the follow
ing example:1

1 A corresponding example in our previous paper ([1J, pp. 12—13) is wrong 
as it stands. The above example shows how it may be rectified.

2 For if A is a sub-set of [f < a] or [f < a], it is a sub-set of [inf f < a + e]
n

for any e > 0, hence 99(A) (a + i) a (A) and consequently 99(A) < ap(A). 
Similarly, if A is a sub-set of [f > a] or [f > a], it is a sub-set of [sup f > a — e] 

n
for any e > 0, hence <p(A) > (a— e) p(A) and consequently <p(A) > ap(A).

Let consist of all sub-sets of a set E of three elements a,
b, and c, and let ^({a}) = l, p({b}) = p({c}) = 0, and
y ((a)) = 0, <p({b}) =1, gp({c}) = — 1. Let ft' consist of all 
sets containing either both or none of the elements b and c. Then
the function f = 0 is a derivative of gp' with respect to p , but
not of y with respect to p.

6. Proof of the second limit theorem. In this case = 2)ftn 
 n

Since /’ and / are ^-measurable for all n, they are ¿/-measurable; 
according to § 2 it is therefore sufficient to prove the inequalities

y (HA) < ap(HA) and gp (ÆA) > ap(KA)

for any A e^', when H = [inf fn < a] and K = [sup fn > a] for an 
n n

arbitrary number a.2
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In order to prove the first inequality it is sufficient to prove 
that if for an arbitrary n we put

Hn = [min f < a]
p < n

we have y(HnA) < ap(HnA) for any Ae$'. For Ht H2 ‘ • 
and H = <5 Hn. Hence [¿(HA) = lim p(HnA) and y (HA) = 

lim cp(HnA).
n

To prove the inequality y (HnA) < cip(HitA) we put

H = n/p< «’ /p + l > a’ fn> for P<n
I [/n < a] for P = n.

Then Hnp^p and Hnp = i/p< Moreover Hn = ~ Hnp- SinCe 

At$p for any p this implies

?(7/nA) = 2’5p(HnpA) = 2>p(HnpA)
p < n p < n

< 2app(HnpA) = 2ap(HnpA) = ap(HnA).
p <n p< n

The inequality y (KA) > ap(KA) is proved analogously.
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